代码

from agno.agent import Agent
from agno.knowledge.text import TextKnowledgeBase
from agno.utils.media import (
    SampleDataFileExtension,
    download_knowledge_filters_sample_data,
)
from agno.vectordb.lancedb import LanceDb

# 下载所有样本简历并获取它们的路径
downloaded_cv_paths = download_knowledge_filters_sample_data(
    num_files=5, file_extension=SampleDataFileExtension.TXT
)

# 初始化 LanceDB
# 默认情况下,它将数据存储在 /tmp/lancedb
vector_db = LanceDb(
    table_name="recipes",
    uri="tmp/lancedb",  # 您可以将此路径更改为在其他位置存储数据
)

# 步骤 1:使用文档和元数据初始化知识库
# ------------------------------------------------------------------------------
# 在加载知识库时,我们可以附加用于过滤的元数据
# 此元数据可以包含用户 ID、文档类型、日期或任何其他属性

# 初始化 TextKnowledgeBase
knowledge_base = TextKnowledgeBase(
    vector_db=vector_db,
    num_documents=5,
)

knowledge_base.load_document(
    path=downloaded_cv_paths[0],
    metadata={"user_id": "jordan_mitchell", "document_type": "cv", "year": 2025},
    recreate=True,  # 仅在首次运行时设置为 True,之后设置为 False
)

# 加载具有 user_2 元数据的第二个文档
knowledge_base.load_document(
    path=downloaded_cv_paths[1],
    metadata={"user_id": "taylor_brooks", "document_type": "cv", "year": 2025},
)

# 加载具有 user_3 元数据的第二个文档
knowledge_base.load_document(
    path=downloaded_cv_paths[2],
    metadata={"user_id": "morgan_lee", "document_type": "cv", "year": 2025},
)

# 加载具有 user_4 元数据的第二个文档
knowledge_base.load_document(
    path=downloaded_cv_paths[3],
    metadata={"user_id": "casey_jordan", "document_type": "cv", "year": 2025},
)

# 加载具有 user_5 元数据的第二个文档
knowledge_base.load_document(
    path=downloaded_cv_paths[4],
    metadata={"user_id": "alex_rivera", "document_type": "cv", "year": 2025},
)

# 步骤 2:使用不同的过滤器组合查询知识库
# ------------------------------------------------------------------------------
# 取消注释您想运行的示例

# 选项 1:在 Agent 上进行过滤
# 使用知识库初始化 Agent
agent = Agent(
    knowledge=knowledge_base,
    search_knowledge=True,
    knowledge_filters={"user_id": "jordan_mitchell"},
)
agent.print_response(
    "告诉我关于 Jordan Mitchell 的经验和技能",
    markdown=True,
)

# agent = Agent(
#     knowledge=knowledge_base,
#     search_knowledge=True,
# )
# agent.print_response(
#     "告诉我关于 Jordan Mitchell 的经验和技能",
#     knowledge_filters = {"user_id": "jordan_mitchell"},
#     markdown=True,
# )

用法

1

安装库

pip install -U agno openai lancedb
2

运行示例

python cookbook/agent_concepts/knowledge/filters/text/filtering_on_load.py