代码
Copy
from agno.agent import Agent
from agno.knowledge.pdf import PDFKnowledgeBase
from agno.utils.media import (
SampleDataFileExtension,
download_knowledge_filters_sample_data,
)
from agno.vectordb.search import SearchType
from agno.vectordb.weaviate import Distance, VectorIndex, Weaviate
# 下载所有样本简历并获取它们的路径
downloaded_cv_paths = download_knowledge_filters_sample_data(
num_files=5, file_extension=SampleDataFileExtension.PDF
)
# 步骤 1:用文档和元数据初始化知识库
# ------------------------------------------------------------------------------
# 在初始化知识库时,我们可以附加将被用于过滤的元数据。
# 此元数据可以包括用户 ID、文档类型、日期或任何其他属性。
vector_db = Weaviate(
collection="recipes",
vector_index=VectorIndex.HNSW,
distance=Distance.COSINE,
local=False, # 如果使用 Weaviate Cloud 则设置为 False,如果使用本地实例则设置为 True
)
knowledge_base = PDFKnowledgeBase(
path=[
{
"path": downloaded_cv_paths[0],
"metadata": {
"user_id": "jordan_mitchell",
"document_type": "cv",
"year": 2025,
},
},
{
"path": downloaded_cv_paths[1],
"metadata": {
"user_id": "taylor_brooks",
"document_type": "cv",
"year": 2025,
},
},
{
"path": downloaded_cv_paths[2],
"metadata": {
"user_id": "morgan_lee",
"document_type": "cv",
"year": 2025,
},
},
{
"path": downloaded_cv_paths[3],
"metadata": {
"user_id": "casey_jordan",
"document_type": "cv",
"year": 2025,
},
},
{
"path": downloaded_cv_paths[4],
"metadata": {
"user_id": "alex_rivera",
"document_type": "cv",
"year": 2025,
},
},
],
vector_db=vector_db,
)
# 将所有文档加载到向量数据库中
knowledge_base.load(recreate=True)
# 步骤 2:使用不同的过滤组合查询知识库
# ------------------------------------------------------------------------------
agent = Agent(
knowledge=knowledge_base,
search_knowledge=True,
)
agent.print_response(
"告诉我关于 Jordan Mitchell 的经验和技能",
knowledge_filters={"user_id": "jordan_mitchell"},
markdown=True,
)
用法
1
安装库
Copy
pip install -U agno weaviate-client openai
2
运行示例
Copy
python cookbook/agent_concepts/knowledge/filters/filtering_weaviate.py