了解如何使用具有用户特定元数据的 Pdf 文档在 PgVector 中筛选知识库搜索。
from agno.agent import Agent
from agno.knowledge.pdf import PDFKnowledgeBase
from agno.utils.media import (
SampleDataFileExtension,
download_knowledge_filters_sample_data,
)
from agno.vectordb.pgvector import PgVector
# Download all sample CVs and get their paths
downloaded_cv_paths = download_knowledge_filters_sample_data(
num_files=5, file_extension=SampleDataFileExtension.PDF
)
# Initialize PgVector
db_url = "postgresql+psycopg://ai:ai@localhost:5532/ai"
vector_db = PgVector(table_name="recipes", db_url=db_url)
# Step 1: Initialize knowledge base with documents and metadata
# ------------------------------------------------------------------------------
# When initializing the knowledge base, we can attach metadata that will be used for filtering
# This metadata can include user IDs, document types, dates, or any other attributes
knowledge_base = PDFKnowledgeBase(
path=[
{
"path": downloaded_cv_paths[0],
"metadata": {
"user_id": "jordan_mitchell",
"document_type": "cv",
"year": 2025,
},
},
{
"path": downloaded_cv_paths[1],
"metadata": {
"user_id": "taylor_brooks",
"document_type": "cv",
"year": 2025,
},
},
{
"path": downloaded_cv_paths[2],
"metadata": {
"user_id": "morgan_lee",
"document_type": "cv",
"year": 2025,
},
},
{
"path": downloaded_cv_paths[3],
"metadata": {
"user_id": "casey_jordan",
"document_type": "cv",
"year": 2025,
},
},
{
"path": downloaded_cv_paths[4],
"metadata": {
"user_id": "alex_rivera",
"document_type": "cv",
"year": 2025,
},
},
],
vector_db=vector_db,
)
# Load all documents into the vector database
knowledge_base.load(recreate=True)
# Step 2: Query the knowledge base with different filter combinations
# ------------------------------------------------------------------------------
agent = Agent(
knowledge=knowledge_base,
search_knowledge=True,
)
agent.print_response(
"Tell me about Jordan Mitchell's experience and skills",
knowledge_filters={"user_id": "jordan_mitchell"},
markdown=True,
)
安装库
pip install -U agno sqlalchemy psycopg openai
运行示例
python cookbook/agent_concepts/knowledge/filters/filtering_pgvector.py