from pathlib import Path
from agno.agent import Agent
from agno.knowledge.combined import CombinedKnowledgeBase
from agno.knowledge.csv import CSVKnowledgeBase
from agno.knowledge.pdf import PDFKnowledgeBase
from agno.knowledge.pdf_url import PDFUrlKnowledgeBase
from agno.knowledge.website import WebsiteKnowledgeBase
from agno.vectordb.pgvector import PgVector
db_url = "postgresql+psycopg://ai:ai@localhost:5532/ai"
# 创建 CSV 知识库
csv_kb = CSVKnowledgeBase(
path=Path("data/csvs"),
vector_db=PgVector(
table_name="csv_documents",
db_url=db_url,
),
)
# 创建 PDF URL 知识库
pdf_url_kb = PDFUrlKnowledgeBase(
urls=["https://agno-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf"],
vector_db=PgVector(
table_name="pdf_documents",
db_url=db_url,
),
)
# 创建网站知识库
website_kb = WebsiteKnowledgeBase(
urls=["https://docs.agno.com/introduction"],
max_links=10,
vector_db=PgVector(
table_name="website_documents",
db_url=db_url,
),
)
# 创建本地 PDF 知识库
local_pdf_kb = PDFKnowledgeBase(
path="data/pdfs",
vector_db=PgVector(
table_name="pdf_documents",
db_url=db_url,
),
)
# 组合知识库
knowledge_base = CombinedKnowledgeBase(
sources=[
csv_kb,
pdf_url_kb,
website_kb,
local_pdf_kb,
],
vector_db=PgVector(
table_name="combined_documents",
db_url=db_url,
),
)
# 使用组合知识库初始化 Agent
agent = Agent(
knowledge=knowledge_base,
search_knowledge=True,
)
knowledge_base.load(recreate=False)
# 使用 Agent
agent.print_response("Ask me about something from the knowledge base", markdown=True)
创建虚拟环境
打开 Terminal
并创建一个 python 虚拟环境。
python3 -m venv .venv
source .venv/bin/activate
安装库
pip install -U sqlalchemy 'psycopg[binary]' pgvector pypdf agno
运行 PgVector
docker run -d \
-e POSTGRES_DB=ai \
-e POSTGRES_USER=ai \
-e POSTGRES_PASSWORD=ai \
-e PGDATA=/var/lib/postgresql/data/pgdata \
-v pgvolume:/var/lib/postgresql/data \
-p 5532:5432 \
--name pgvector \
agnohq/pgvector:16
运行 Agent
python cookbook/agent_concepts/knowledge/combined_kb.py