from agno.agent import Agent
from agno.knowledge.csv_url import CSVUrlKnowledgeBase
from agno.vectordb.pgvector import PgVector
db_url = "postgresql+psycopg://ai:ai@localhost:5532/ai"
knowledge_base = CSVUrlKnowledgeBase(
urls=["https://agno-public.s3.amazonaws.com/csvs/employees.csv"],
vector_db=PgVector(table_name="csv_documents", db_url=db_url),
)
knowledge_base.load(recreate=False) # 首次运行后注释掉此行
agent = Agent(
knowledge=knowledge_base,
search_knowledge=True,
)
agent.print_response(
"What is the average salary of employees in the Marketing department?",
markdown=True,
)
创建虚拟环境
打开 Terminal
并创建一个 python 虚拟环境。
python3 -m venv .venv
source .venv/bin/activate
安装库
pip install -U sqlalchemy 'psycopg[binary]' pgvector agno
运行 PgVector
docker run -d \
-e POSTGRES_DB=ai \
-e POSTGRES_USER=ai \
-e POSTGRES_PASSWORD=ai \
-e PGDATA=/var/lib/postgresql/data/pgdata \
-v pgvolume:/var/lib/postgresql/data \
-p 5532:5432 \
--name pgvector \
agnohq/pgvector:16
运行 Agent
python cookbook/agent_concepts/knowledge/csv_url_kb.py