了解如何使用具有用户特定元数据的 PDF 文档在 Qdrant 中过滤知识库搜索。
from agno.agent import Agent
from agno.knowledge.pdf import PDFKnowledgeBase
from agno.utils.media import (
SampleDataFileExtension,
download_knowledge_filters_sample_data,
)
from agno.vectordb.qdrant import Qdrant
# 下载所有样本简历并获取其路径
downloaded_cv_paths = download_knowledge_filters_sample_data(
num_files=5, file_extension=SampleDataFileExtension.PDF
)
COLLECTION_NAME = "filtering-cv"
vector_db = Qdrant(collection=COLLECTION_NAME, url="http://localhost:6333")
# 第 1 步:使用文档和元数据初始化知识库
# ------------------------------------------------------------------------------
# 在初始化知识库时,我们可以附加用于过滤的元数据
# 此元数据可以包括用户 ID、文档类型、日期或任何其他属性
knowledge_base = PDFKnowledgeBase(
path=[
{
"path": downloaded_cv_paths[0],
"metadata": {
"user_id": "jordan_mitchell",
"document_type": "cv",
"year": 2025,
},
},
{
"path": downloaded_cv_paths[1],
"metadata": {
"user_id": "taylor_brooks",
"document_type": "cv",
"year": 2025,
},
},
{
"path": downloaded_cv_paths[2],
"metadata": {
"user_id": "morgan_lee",
"document_type": "cv",
"year": 2025,
},
},
{
"path": downloaded_cv_paths[3],
"metadata": {
"user_id": "casey_jordan",
"document_type": "cv",
"year": 2025,
},
},
{
"path": downloaded_cv_paths[4],
"metadata": {
"user_id": "alex_rivera",
"document_type": "cv",
"year": 2025,
},
},
],
vector_db=vector_db,
)
# 将所有文档加载到向量数据库中
knowledge_base.load(recreate=True)
# 第 2 步:使用不同的过滤组合查询知识库
# ------------------------------------------------------------------------------
agent = Agent(
knowledge=knowledge_base,
search_knowledge=True,
)
agent.print_response(
"告诉我关于 Jordan Mitchell 的经验和技能",
knowledge_filters={"user_id": "jordan_mitchell"},
markdown=True,
)
安装库
pip install -U agno qdrant-client openai
运行示例
python cookbook/agent_concepts/knowledge/filters/filtering_qdrant_db.py