了解如何使用具有用户特定元数据的 Docx 文档进行代理知识过滤。
from pathlib import Path
from agno.agent import Agent
from agno.knowledge.docx import DocxKnowledgeBase
from agno.utils.media import (
SampleDataFileExtension,
download_knowledge_filters_sample_data,
)
from agno.vectordb.lancedb import LanceDb
# 下载所有样本简历并获取其路径
downloaded_cv_paths = download_knowledge_filters_sample_data(
num_files=5, file_extension=SampleDataFileExtension.DOCX
)
# 初始化 LanceDB
# 默认情况下,它将数据存储在 /tmp/lancedb
vector_db = LanceDb(
table_name="recipes",
uri="tmp/lancedb", # 您可以将此路径更改为存储其他位置的数据
)
# 步骤 1:使用文档和元数据初始化知识库
# ------------------------------------------------------------------------------
# 在初始化知识库时,我们可以附加将用于过滤的元数据
# 此元数据可以包括用户 ID、文档类型、日期或任何其他属性
knowledge_base = DocxKnowledgeBase(
path=[
{
"path": downloaded_cv_paths[0],
"metadata": {
"user_id": "jordan_mitchell",
"document_type": "cv",
"year": 2025,
},
},
{
"path": downloaded_cv_paths[1],
"metadata": {
"user_id": "taylor_brooks",
"document_type": "cv",
"year": 2025,
},
},
{
"path": downloaded_cv_paths[2],
"metadata": {
"user_id": "morgan_lee",
"document_type": "cv",
"year": 2025,
},
},
{
"path": downloaded_cv_paths[3],
"metadata": {
"user_id": "casey_jordan",
"document_type": "cv",
"year": 2025,
},
},
{
"path": downloaded_cv_paths[4],
"metadata": {
"user_id": "alex_rivera",
"document_type": "cv",
"year": 2025,
},
},
],
vector_db=vector_db,
)
# 将所有文档加载到向量数据库中
knowledge_base.load(recreate=True)
# 步骤 2:使用具有从查询中自动提取的过滤器的 Agent 查询知识库
# -----------------------------------------------------------------------------------
# 启用代理过滤
agent = Agent(
knowledge=knowledge_base,
search_knowledge=True,
enable_agentic_knowledge_filters=True,
)
# 查询 Jordan Mitchell 的经验和技能,并在查询中包含过滤器,以便 Agent 可以自动获取它们
agent.print_response(
"Tell me about Jordan Mitchell's experience and skills with jordan_mitchell as user id and document type cv",
markdown=True,
)
安装库
pip install -U agno openai lancedb
运行示例
python cookbook/agent_concepts/knowledge/filters/docx/agentic_filtering.py