代码

cookbook/models/aws/bedrock/knowledge.py
from agno.agent import Agent
from agno.knowledge.pdf_url import PDFUrlKnowledgeBase
from agno.models.aws import AwsBedrock
from agno.vectordb.pgvector import PgVector

db_url = "postgresql+psycopg://ai:ai@localhost:5532/ai"

knowledge_base = PDFUrlKnowledgeBase(
    urls=["https://agno-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf"],
    vector_db=PgVector(table_name="recipes", db_url=db_url),
)
knowledge_base.load(recreate=True)  # 首次运行后注释掉

agent = Agent(
    model=AwsBedrock(id="mistral.mistral-large-2402-v1:0"), markdown=True
    knowledge=knowledge_base,
    show_tool_calls=True,
)
agent.print_response("How to make Thai curry?", markdown=True)

用法

1

创建虚拟环境

打开 Terminal 并创建一个 python 虚拟环境。

python3 -m venv .venv
source .venv/bin/activate
2

设置您的 AWS 凭证

export AWS_ACCESS_KEY_ID=***
export AWS_SECRET_ACCESS_KEY=***
export AWS_REGION=***
3

安装库

pip install -U boto3 sqlalchemy pgvector pypdf openai psycopg agno
4

运行 PgVector

docker run -d \
  -e POSTGRES_DB=ai \
  -e POSTGRES_USER=ai \
  -e POSTGRES_PASSWORD=ai \
  -e PGDATA=/var/lib/postgresql/data/pgdata \
  -v pgvolume:/var/lib/postgresql/data \
  -p 5532:5432 \
  --name pgvector \
  agnohq/pgvector:16
5

运行 Agent

python cookbook/models/aws/bedrock/knowledge.py