from agno.agent import Agent
from agno.knowledge.pdf_url import PDFUrlKnowledgeBase
from agno.vectordb.search import SearchType
from agno.vectordb.weaviate import Distance, VectorIndex, Weaviate
vector_db = Weaviate(
collection="recipes",
search_type=SearchType.hybrid,
vector_index=VectorIndex.HNSW,
distance=Distance.COSINE,
local=True, # 如果使用 Weaviate Cloud 则设置为 False,如果使用本地实例则设置为 True
)
# 创建知识库
knowledge_base = PDFUrlKnowledgeBase(
urls=["https://agno-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf"],
vector_db=vector_db,
)
knowledge_base.load(recreate=False) # 首次运行后注释掉此行
# 创建并使用 Agent
agent = Agent(
knowledge=knowledge_base,
search_knowledge=True,
show_tool_calls=True,
)
agent.print_response("How to make Thai curry?", markdown=True)
创建虚拟环境
打开 Terminal
并创建一个 python 虚拟环境。
python3 -m venv .venv
source .venv/bin/activate
安装库
pip install -U weaviate-client pypdf openai agno
运行 Agent
python cookbook/agent_concepts/vector_dbs/weaviate_db.py