from os import getenv
from agno.agent import Agent
from agno.knowledge.pdf_url import PDFUrlKnowledgeBase
from agno.vectordb.pineconedb import PineconeDb
api_key = getenv("PINECONE_API_KEY")
index_name = "thai-recipe-index"
vector_db = PineconeDb(
name=index_name,
dimension=1536,
metric="cosine",
spec={"serverless": {"cloud": "aws", "region": "us-east-1"}},
api_key=api_key,
)
knowledge_base = PDFUrlKnowledgeBase(
urls=["https://agno-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf"],
vector_db=vector_db,
)
knowledge_base.load(recreate=False, upsert=True)
agent = Agent(
knowledge=knowledge_base,
show_tool_calls=True,
search_knowledge=True,
read_chat_history=True,
)
agent.print_response("How do I make pad thai?", markdown=True)
创建虚拟环境
打开 Terminal
并创建一个 python 虚拟环境。
python3 -m venv .venv
source .venv/bin/activate
设置你的 API Key
export PINECONE_API_KEY=xxx
安装库
pip install -U pinecone-client pypdf openai agno
运行 Agent
python cookbook/agent_concepts/vector_dbs/pinecone_db.py