from agno.agent import Agent
from agno.embedder.openai import OpenAIEmbedder
from agno.knowledge.pdf_url import PDFUrlKnowledgeBase
from agno.models.openai import OpenAIChat
from agno.vectordb.pgvector import PgVector, SearchType
db_url = "postgresql+psycopg://ai:ai@localhost:5532/ai"
# 创建一个包含来自 URL 的 PDF 的知识库
knowledge_base = PDFUrlKnowledgeBase(
urls=["https://agno-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf"],
# 使用 PgVector 作为向量数据库,并将嵌入存储在 `ai.recipes` 表中
vector_db=PgVector(
table_name="recipes",
db_url=db_url,
search_type=SearchType.hybrid,
embedder=OpenAIEmbedder(id="text-embedding-3-small"),
),
)
# 加载知识库:首次运行后注释掉此行,因为知识库已加载
knowledge_base.load(upsert=True)
agent = Agent(
model=OpenAIChat(id="gpt-4o"),
knowledge=knowledge_base,
# 添加一个用于搜索知识库的工具,以启用 agentic RAG。
# 当将 `knowledge` 提供给 Agent 时,默认启用此功能。
search_knowledge=True,
show_tool_calls=True,
markdown=True,
)
agent.print_response(
"如何制作冬阴功椰奶鸡汤", stream=True
)
创建虚拟环境
打开 Terminal
并创建一个 python 虚拟环境。
python3 -m venv .venv
source .venv/bin/activate
设置您的 API 密钥
export OPENAI_API_KEY=xxx
安装库
pip install -U openai sqlalchemy 'psycopg[binary]' pgvector agno
运行 PgVector
docker run -d \
-e POSTGRES_DB=ai \
-e POSTGRES_USER=ai \
-e POSTGRES_PASSWORD=ai \
-e PGDATA=/var/lib/postgresql/data/pgdata \
-v pgvolume:/var/lib/postgresql/data \
-p 5532:5432 \
--name pgvector \
agnohq/pgvector:16
运行 Agent
python cookbook/agent_concepts/rag/agentic_rag_pgvector.py