---
title: Agentic RAG with LanceDB
---
## Code
```python
from agno.agent import Agent
from agno.embedder.openai import OpenAIEmbedder
from agno.knowledge.pdf_url import PDFUrlKnowledgeBase
from agno.models.openai import OpenAIChat
from agno.vectordb.lancedb import LanceDb, SearchType
# Create a knowledge base of PDFs from URLs
knowledge_base = PDFUrlKnowledgeBase(
urls=["https://agno-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf"],
# Use LanceDB as the vector database and store embeddings in the `recipes` table
vector_db=LanceDb(
table_name="recipes",
uri="tmp/lancedb",
search_type=SearchType.vector,
embedder=OpenAIEmbedder(id="text-embedding-3-small"),
),
)
# Load the knowledge base: Comment after first run as the knowledge base is already loaded
knowledge_base.load()
agent = Agent(
model=OpenAIChat(id="gpt-4o"),
knowledge=knowledge_base,
# Add a tool to search the knowledge base which enables agentic RAG.
# This is enabled by default when `knowledge` is provided to the Agent.
search_knowledge=True,
show_tool_calls=True,
markdown=True,
)
agent.print_response(
"How do I make chicken and galangal in coconut milk soup", stream=True
)
创建虚拟环境
打开 Terminal
并创建一个 python 虚拟环境。
python3 -m venv .venv
source .venv/bin/activate
设置你的 API Key
export OPENAI_API_KEY=xxx
安装库
pip install -U openai lancedb tantivy pypdf sqlalchemy agno
运行 Agent
python cookbook/agent_concepts/rag/agentic_rag_lancedb.py