import typer
from agno.agent import Agent
from agno.knowledge.pdf_url import PDFUrlKnowledgeBase
from agno.vectordb.search import SearchType
from agno.vectordb.weaviate import Distance, VectorIndex, Weaviate
from rich.prompt import Prompt
vector_db = Weaviate(
collection="recipes",
search_type=SearchType.hybrid,
vector_index=VectorIndex.HNSW,
distance=Distance.COSINE,
local=False, # 如果使用 Weaviate Cloud,设置为 True,如果使用本地实例,设置为 False
hybrid_search_alpha=0.6, # 调整用于混合搜索的 alpha 值(0.0-1.0,默认为 0.5),其中 0 是纯关键词搜索,1 是纯向量搜索
)
knowledge_base = PDFUrlKnowledgeBase(
urls=["https://agno-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf"],
vector_db=vector_db,
)
def weaviate_agent(user: str = "user"):
agent = Agent(
user_id=user,
knowledge=knowledge_base,
search_knowledge=True,
)
while True:
message = Prompt.ask(f"[bold] :sunglasses: {user} [/bold]")
if message in ("exit", "bye"):
break
agent.print_response(message)
if __name__ == "__main__":
# 首次运行后注释掉此行
knowledge_base.load(recreate=True)
typer.run(weaviate_agent)
创建虚拟环境
打开 Terminal
并创建一个 python 虚拟环境。
python3 -m venv .venv
source .venv/bin/activate
设置您的 API 密钥
export OPENAI_API_KEY=xxx
安装库
pip install -U weaviate-client tantivy pypdf openai agno
运行 Agent
python cookbook/agent_concepts/knowledge/vector_dbs/weaviate_db/weaviate_db_hybrid_search.py