import typer
from agno.agent import Agent
from agno.knowledge.pdf_url import PDFUrlKnowledgeBase
from agno.vectordb.mongodb import MongoDb
from agno.vectordb.search import SearchType
from rich.prompt import Prompt
# MongoDB Atlas 连接字符串
"""
示例连接字符串:
"mongodb_srv://<username>:<password>@cluster0.mongodb.net/?retryWrites=true&w=majority"
"mongodb://localhost:27017/agno?authSource=admin"
"""
mdb_connection_string = "mongodb_srv://<username>:<password>@cluster0.mongodb.net/?retryWrites=true&w=majority"
vector_db = MongoDb(
collection_name="recipes",
db_url=mdb_connection_string,
search_index_name="recipes",
search_type=SearchType.hybrid
)
knowledge_base = PDFUrlKnowledgeBase(
urls=["https://agno-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf"],
vector_db=vector_db,
)
def mongodb_agent(user: str = "user"):
agent = Agent(
user_id=user,
knowledge=knowledge_base,
search_knowledge=True,
)
while True:
message = Prompt.ask(f"[bold] :sunglasses: {user} [/bold]")
if message in ("exit", "bye"):
break
agent.print_response(message)
if __name__ == "__main__":
# 首次运行时注释掉
knowledge_base.load(recreate=True)
typer.run(mongodb_agent)
创建虚拟环境
打开 Terminal
并创建一个 python 虚拟环境。
python3 -m venv .venv
source .venv/bin/activate
设置您的 API 密钥
export OPENAI_API_KEY=xxx
安装库
pip install -U pymongo tantivy pypdf openai agno
运行 Agent
python cookbook/agent_concepts/knowledge/vector_dbs/mongo_db/mongo_db_hybrid_search.py