from agno.agent import AgentKnowledge
from agno.embedder.fastembed import FastEmbedEmbedder
from agno.vectordb.pgvector import PgVector
embeddings = FastEmbedEmbedder().get_embedding(
"The quick brown fox jumps over the lazy dog."
)
# 打印嵌入向量及其维度
print(f"Embeddings: {embeddings[:5]}")
print(f"Dimensions: {len(embeddings)}")
# 用例:
knowledge_base = AgentKnowledge(
vector_db=PgVector(
db_url="postgresql+psycopg://ai:ai@localhost:5532/ai",
table_name="qdrant_embeddings",
embedder=FastEmbedEmbedder(),
),
num_documents=2,
)
创建虚拟环境
打开 Terminal
并创建一个 python 虚拟环境。
python3 -m venv .venv
source .venv/bin/activate
安装库
pip install -U sqlalchemy 'psycopg[binary]' pgvector fastembed agno
运行 PgVector
docker run -d \
-e POSTGRES_DB=ai \
-e POSTGRES_USER=ai \
-e POSTGRES_PASSWORD=ai \
-e PGDATA=/var/lib/postgresql/data/pgdata \
-v pgvolume:/var/lib/postgresql/data \
-p 5532:5432 \
--name pgvector \
agnohq/pgvector:16
运行 Agent
python cookbook/agent_concepts/knowledge/embedders/qdrant_fastembed.py