from agno.agent import Agent
from agno.embedder.ollama import OllamaEmbedder
from agno.knowledge.pdf_url import PDFUrlKnowledgeBase
from agno.models.lmstudio import LMStudio
from agno.vectordb.pgvector import PgVector
db_url = "postgresql+psycopg://ai:ai@localhost:5532/ai"
knowledge_base = PDFUrlKnowledgeBase(
urls=["https://agno-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf"],
vector_db=PgVector(
table_name="recipes",
db_url=db_url,
embedder=OllamaEmbedder(id="llama3.2", dimensions=3072),
),
)
knowledge_base.load(recreate=True) # 首次运行后注释掉此行
agent = Agent(
model=LMStudio(id="qwen2.5-7b-instruct-1m"),
knowledge=knowledge_base,
show_tool_calls=True,
)
agent.print_response("How to make Thai curry?", markdown=True)
创建虚拟环境
打开 Terminal
并创建一个 python 虚拟环境。
python3 -m venv .venv
source .venv/bin/activate
安装 LM Studio
从这里安装 LM Studio 并下载您想使用的模型。
安装库
pip install -U sqlalchemy pgvector pypdf agno
运行 PgVector
docker run -d \
-e POSTGRES_DB=ai \
-e POSTGRES_USER=ai \
-e POSTGRES_PASSWORD=ai \
-e PGDATA=/var/lib/postgresql/data/pgdata \
-v pgvolume:/var/lib/postgresql/data \
-p 5532:5432 \
--name pgvector \
agnohq/pgvector:16
运行代理
python cookbook/models/lmstudio/knowledge.py