from agno.agent import Agent
from agno.embedder.azure_openai import AzureOpenAIEmbedder
from agno.knowledge.pdf_url import PDFUrlKnowledgeBase
from agno.models.azure import AzureOpenAI
from agno.vectordb.pgvector import PgVector
db_url = "postgresql+psycopg://ai:ai@localhost:5532/ai"
knowledge_base = PDFUrlKnowledgeBase(
urls=["https://agno-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf"],
vector_db=PgVector(
table_name="recipes",
db_url=db_url,
embedder=AzureOpenAIEmbedder(),
),
)
knowledge_base.load(recreate=False) # 首次运行后注释此行
agent = Agent(
model=AzureOpenAI(id="gpt-4o"),
knowledge=knowledge_base,
show_tool_calls=True,
debug_mode=True,
)
agent.print_response("How to make Thai curry?", markdown=True)
创建虚拟环境
打开 Terminal
并创建一个 python 虚拟环境。
python3 -m venv .venv
source .venv/bin/activate
设置您的 API 密钥
export AZURE_OPENAI_API_KEY=xxx
export AZURE_OPENAI_ENDPOINT=xxx
export AZURE_DEPLOYMENT=xxx
安装库
pip install -U openai agno duckduckgo-search sqlalchemy pgvector pypdf
运行 PgVector
docker run -d \
-e POSTGRES_DB=ai \
-e POSTGRES_USER=ai \
-e POSTGRES_PASSWORD=ai \
-e PGDATA=/var/lib/postgresql/data/pgdata \
-v pgvolume:/var/lib/postgresql/data \
-p 5532:5432 \
--name pgvector \
agnohq/pgvector:16
运行 Agent
python cookbook/models/azure/openai/knowledge.py