此示例展示了如何获取特殊的 token 指标,例如音频、缓存和推理 token。
import requests
from agno.agent import Agent
from agno.media import Audio
from agno.models.openai import OpenAIChat
# 获取音频文件并将其转换为 base64 编码字符串
url = "https://openaiassets.blob.core.windows.net/$web/API/docs/audio/alloy.wav"
response = requests.get(url)
response.raise_for_status()
wav_data = response.content
agent = Agent(
model=OpenAIChat(
id="gpt-4o-audio-preview",
modalities=["text", "audio"],
audio={"voice": "sage", "format": "wav"},
),
markdown=True,
debug_mode=True,
)
agent.print_response(
"What's in these recording?",
audio=[Audio(content=wav_data, format="wav")],
)
# 显示输入音频、输出音频和总音频 token 指标
print(f"Input audio tokens: {agent.run_response.metrics['input_audio_tokens']}")
print(f"Output audio tokens: {agent.run_response.metrics['output_audio_tokens']}")
print(f"Audio tokens: {agent.run_response.metrics['audio_tokens']}")
agent = Agent(
model=OpenAIChat(id="o3-mini"),
markdown=True,
telemetry=False,
monitoring=False,
debug_mode=True,
)
agent.print_response(
"Solve the trolley problem. Evaluate multiple ethical frameworks. Include an ASCII diagram of your solution.",
stream=False,
)
# 显示推理 token 指标
print(f"Reasoning tokens: {agent.run_response.metrics['reasoning_tokens']}")
agent = Agent(
model=OpenAIChat(id="gpt-4o-mini"), markdown=True, telemetry=False, monitoring=False
)
agent.run("Share a 2 sentence horror story" * 150)
agent.print_response("Share a 2 sentence horror story" * 150)
# 显示缓存 token 指标
print(f"Cached tokens: {agent.run_response.metrics['cached_tokens']}")
创建虚拟环境
打开 Terminal
并创建一个 python 虚拟环境。
python3 -m venv .venv
source .venv/bin/activate
设置你的 API 密钥
export OPENAI_API_KEY=xxx
安装库
pip install -U requests openai agno
运行 Agent
python cookbook/agent_concepts/other/agent_extra_metrics.py